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Abstract—Intrusion analysis, i.e., the process of combing
through IDS alerts and audit logs to identify real successful
and attempted attacks, remains a difficult problem in practical
network security defense. The major contributing cause to this
problem is the high false-positive rate in the sensors used by
IDS systems to detect malicious activities. The goal of our work
is to examine whether a machine-learned classifier can help a
human analyst filter out non-interesting scenarios reported by
an IDS alert correlator, so that analysts’ time can be saved. This
research is conducted in the open-source SnIPS intrusion analysis
framework. Throughout observing the output of SnIPS running
on our departmental network, we found that an analyst would
need to perform repetitive tasks in pruning out the false positives
in the correlation graphs produced by it. We hypothesized that
such repetitive tasks can yield (limited) labeled data that can
enable the use of a machine learning-based approach to prune
SnIPS’ output based on the human analysts’ feedback, much
similar to spam filters that can learn from users’ past judgment
to prune emails. Our goal is to classify the correlation graphs pro-
duced from SnIPS into “interesting” and “non-interesting”, where
“interesting” means that a human analyst would want to conduct
further analysis on the events. We spent significant amount of
time manually labeling SnIPS’ output correlations based on this
criterion, and built prediction models using both supervised and
semi-supervised learning approaches. Our experiments revealed
a number of interesting observations that give insights into the
pitfalls and challenges of applying machine learning in intrusion
analysis. The experimentation results also indicate that semi-
supervised learning is a promising approach towards practical
machine learning-based tools that can aid human analysts, when
a limited amount of labeled data is available.

I. INTRODUCTION

Intrusion analysis is the process of examining real-time
events such as IDS alerts and audit logs to identify and confirm
successful attacks into computer systems. The IDS sensors
that we have to rely on for this purpose often suffer from
high false-positive rate. For example, we run the well-known
open-source IDS system Snort on our departmental network
containing just a couple hundred machines and Snort produces
tens of thousands of alerts every day, most of which happen to
be false alarms. The reason for this is well-known: to prevent
false negatives, i.e. detection misses from overly specific attack
signatures, the signatures that are loaded in the IDS are often
as general as possible, so that an activity with even a remote
possibility of indicating an attack will trigger an alert. It then
becomes the responsibility of a human analyst monitoring the
IDS system to distinguish the true alarms from the enormous
number of false ones. How to deal with the overwhelming
prevalence of false positives is the primary challenge in making
IDS sensors useful, given that the amount of attack-relevant

data is minuscule compared to the titanic volume of data
produced from an enterprise network. The dilemma created
by this base-rate fallacy, first pointed out by Axelsson [2], has
made it virtually impossible to accurately detect intrusion by a
single sensor. Due to the lack of effective techniques to handle
the false-positive problem, it is common among practitioners
to altogether disable IDS signatures that tend to trigger large
number of false positives. In our own campus network, the
security analysts did not use the standard Snort signatures
at all, but rather resorted to secret attack signatures that are
highly specific to their experience and environment, and have
small false-positive rates. However, as we were told by the
security analysts, the secret signatures can only help capture
some “low-hanging fruits” and many attacks are likely missed
due to the disabled more generic signatures.

Alert correlation, i.e., the reconstruction of high-level in-
cidents from low-level events, has been used to remediate
the false-positive problem. By looking at multiple observation
points and correlating alerts, one can potentially reduce the
false-positive rate and increase the confidence in intrusion
analysis. Indeed, Axelsson’s reasoning implies that it is impos-
sible to achieve useful intrusion detection based on a single
event such as a network packet, since the features existing
in the event are too limited to provide the differentiating
power needed to extract the extremely weak attack signal from
the background traffic. Thus it is a reasonable assumption
that to make IDS sensors useful, it is necessary to correlate
events from multiple sensors as a way to increase the features
available to make decisions, and there has been a long line of
work in creating IDS alert correlation graphs [8], [10], [11],
[19], [20], [21], [22], [26], [30], [31], [34], [35], [36]. In this
work we use SnIPS [22], an open-source intrusion analysis
framework which provides an alert correlation module. SnIPS
also provides a prioritizing module based on an extended
version of Dempster-Shafer (DS) theory [37], which ranks the
correlations by calculating a belief value for each hypothesis
that occurs in the correlation. Correlations with higher-belief
hypotheses are ranked higher and presented to human analysts
first.

When a correlation graph is presented to a security analyst,
the analyst can “browse” the graph to explore its structure as
well as the details of the supporting evidence. If the correlation
proves significantly interesting, the analyst will conduct further
forensic analysis on data that is outside SnIPS, to confirm
or rule out the scenario. This process is manual and even
with the help of the belief values, the human analyst still
needs to look at the evidential details of the correlation to
determine if it is worth further investigation, as the belief
values do not always exactly match the priority determined
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by the human. Given this, the question is whether anything
can be done to further automate the prioritization process,
so that the human analysts’ time can be saved. Throughout
our experimentation with SnIPS on our departmental network,
we found that the user needs to do many repetitive tasks in
the analysis of the tool’s output to determine whether further
investigation is warranted. We hypothesize that the rationale
behind the repetitive tasks can be inferred through a machine
learning approach, so that the prioritization process can be
further automated. We adopt machine learning as a candidate
technique to further help prioritizing intrusion analysis since
it seems that a human, after examining the correlation output,
can make a decision on whether to further investigate the
incident or not. Thus, there is basis to believe that the SnIPS’
output can yield a set of predictive features indicating whether
a correlation is interesting or not. Furthermore, the fact that a
human analyst would have to look at a correlation graph and
determine whether to escalate investigation implies that there
would be labeled samples (albeit small in amount) available
when the tool is put to use in operation. This would be similar
to the approach taken in spam filtering, where machine learning
has proved to be quite successful [14], [15].

While it is possible that this prioritization process could also
be automated through other means such as a rule-based system,
we think it is more cost effective if the machine can learn
the rules automatically. In the long run, the machine-learned
models could provide insights into how to build a system to
do the same job without the need for learning.

Our Contributions
1) We apply machine learning to automate the process of

intrusion analysis, as opposed to most existing methods
that make use of machine learning in the process of
creating alarms, such as in anomaly-based detection.

2) Our method minimizes the time and effort of training
the model in the deployment stage by using the human
analysts’ effort in investigating the correlations’ valid-
ity to produce labeled data. Furthermore, using semi-
supervised learning enables the model to be trained
starting from as low as 10% of the required dataset
size for supervised learning.

The rest of the paper is organized as follows: section II
covers the background about SnIPS. Section III presents our
research hypotheses followed by section IV which lays out our
approach in applying machine learning in intrusion analysis
using SnIPS. Section V presents our experimental results and
discusses them. Section VI covers the related work and we
conclude by section VII.

II. ALERT CORRELATOR

We use the open-source SnIPS IDS alert correlator [1] in
our research. It works on top of IDS sensors and audit logs
to further analyze the reported events to identify possible
incident scenarios. SnIPS maps a triggered IDS alert to a
hypothesis such as “compromised machine.” It also maps the
trustworthiness of the hypothesis to a discrete certainty tag
such as “possible”, “likely”, or “certain.” After the alerts are
mapped to hypotheses, the hypotheses are reasoned based on

rule2rule1 rule2

8 : probeOtherMachine(ip2, ip4)7 : probeOtherMachine(ip2, ip3)

9 : compromised(ip2), Belief = γ

sensor2sensor1 sensor4sensor3

2 : alert21 : alert1 4 : alert43 : alert3

6 : sendExploit(ip1, ip2)

5 : alert5

Fig. 1. Automatically generated correlation graph from SnIPS

an internal reasoning model. As a result, an alert correlation
graph is built showing possible links among the hypotheses and
alerts. SnIPS has a prioritization module [37] that can further
refine the results of correlation by assigning each hypothesis
in the correlation graph a belief value based on an extended
version of Dempster-Shafer theory. SnIPS ranks the correlation
graphs by the belief values of the “conclusion nodes” within
the graphs. The goal is to further help security analysts by
showing the graphs with higher belief values first.

Figure 1 shows a sample single-sink alert correlation graph
automatically generated by SnIPS. The correlation graph is
a logical inference graph. SnIPS uses predicates such as
“compromised”, “sendExploit”, and “probeOtherMachine” to
describe various attack hypotheses. Five groups of alerts
alert1 − alert5, are triggered by four different sensors. A
sensor could be one IDS signature (e.g., a Snort rule), or
a group of IDS signatures that capture similar patterns. The
sensor nodes (the ones in dotted squares) are not part of the
graph and are added here for clarity. In this example, alert1
is mapped to the fact that host ip1 sent an exploit to ip2; both
alert2 and alert3 are mapped to the fact that ip2 did malicious
probing to ip3, and so on. The rationale for this correlation
graph is that after ip1 sent an exploit to ip2 (node 6), ip2 could
be compromised (node 9). Once the attacker compromised ip2,
he could send malicious probing from there (nodes 7 & 8).
Thus, these alerts are all potentially correlated in the same
underlying attack sequence. For representational simplicity,
time information is not shown in the example graph (but is
part of the reasoning process). In this example, alert2−alert5
happened after alert1. The arrow of the arcs indicate that
all of alert1 − alert5 support the hypothesis that ip2 was
compromised. The belief value (γ) of the sink (node 9) in the
graph is calculated using the prioritization module.

III. RESEARCH HYPOTHESES

Through our empirical study of the output of the deployed
SnIPS on our departmental network, we found that many
correlations are not interesting since they are supported by
very noisy IDS signatures and the correlation structure does
not provide significant boost on the belief in attacks. When
the correlation does seem to be interesting, often times one
would need to consult additional information that is currently
not captured by SnIPS. It seems that to use a tool like SnIPS
the first task for the security analyst is to determine whether
the output correlation is worthy of further investigation. While
it would be ideal if the calculated belief value can be used
to determine whether further investigation is warranted, our
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practical experience shows that this is not always the case.
Thus, some manual work is still needed to filter out the more
interesting output from SnIPS for further analysis.

In this work we would like to examine the possibility to
automate the manual process of determining whether an IDS
alert correlation graph is interesting and worthy of further
investigation through a machine-learning approach. This hy-
pothesis is justified for the following reasons.

1) The fact that a human analyst can make a determination
on the usefulness of an IDS alert correlation graph indi-
cates that the features within the graph are predictive to
the classification of “interesting” and “non-interesting”,
where “interesting” means that the graph is worthy of
further investigation.

2) The fact that eventually a human analyst will need
to look at the alert correlation graph means that, in
the end, it will be up to the human analyst to make
the final decision on the usefulness of the graph. This
process creates (limited amount of) labeled data to train
a machine-learned classifier. Thus, a machine learning
approach could be feasible for operational use, where
a human analyst looks at the output and provides
feedback on the classifier’s precision in the form of
fresh labeled data, on a continuous basis.

Since the labeled data provided in the use of the alert
correlation tool will be very limited, we also hypothesize that
semi-supervised learning can help to address the problem of
limited labeled data. In the following sections we elaborate on
the experiments through which we examine these hypotheses.

IV. METHODOLOGY

Our intention is to use features existing in SnIPS’ output
to build a prediction model to classify whether the output
correlation is “interesting” or “non-interesting.” Each SnIPS’
output is a correlation graph, with one or more sink nodes. The
sink nodes in a correlation graph represent the conclusion that
the correlation draws. The classification task is to determine
whether the correlation is worthy of investigation based on the
features included in the correlation graph, including the graph
structure, the details of the supporting evidence, and the belief
value of the graph (more on this later).

A. Classes
We want to classify the correlation graphs from SnIPS into

the following two classes:
1) Interesting: This class means that the correlation is

found to be highly suspicious and worthy of more
in-depth investigation. This class covers a wider area
than “true positive,” since the conclusion drawn by the
correlation may turn out to be a false positive after
further investigation.

2) Non-interesting: This class means that the correlation is
found to be non-interesting and not worthy of further
investigation. Ideally under this situation we want the
conclusion drawn by the correlation to be a false posi-
tive as well. However, in reality there is always a chance
that an attack is true but not sufficient evidence is

captured in the correlation so it is mistakenly dismissed
as “non-interesting.” How to improve the true positive
of intrusion analysis is an orthogonal problem of this
research. The “non-interesting” class simply means
that there is not sufficient evidence to warrant further
investigation of the correlation.

B. Dataset Construction

We use data from our departmental network for both training
and testing. This is consistent with the envisioned use of the
prediction model, where each organization will train its own
prediction model based on security analysts’ feedback in using
the correlation tool. It is known that using multiple datasets
could produce stronger evidence on a prediction model’s
effectiveness. However, the particular problem we try to ad-
dress in this research requires access to production networks.
While we have been fortunate to have supportive local system
administrators and were able to conduct this experiment on
one production network (our departmental network), practical
constraints have made obtaining access to multiple production
networks infeasible for us. Indeed it is rare for academic
researchers to be able to get access to production network
data at all. We believe even though our experimentation was
conducted on a single network, the results we obtained still
provide useful insights into the effectiveness of this approach
in practice, and how to apply machine learning for intrusion
analysis in general.

1) Network Setup and Labeling Tool: The departmental net-
work consists of 35 Linux and 11 Windows servers. There are
over 150 workstations including Sun, Mac Pro, and PC running
Windows and Linux. The departmental network consists of
three VLANs: main, printer, and thin clients. The main VLAN
contains all the servers and user machines and is also the entry
point to the departmental network. It is a giga-bit switched
network with a giga-bit uplink to the campus network. We
attached an optic fiber cable to the Cisco switch of the main
VLAN to mirror all traffic on it. This includes ingress and
egress traffic for the departmental network, as well as internal
traffic for the main VLAN. We then run Snort IDS system
on the captured traffic, which produces tens of thousands of
alerts per day. Both Snort and SnIPS run on a dedicated Ubuntu
server running a Linux kernel version 2.6.32 with 16GB of
RAM on an eight-core Intel Xeon processor of CPU speed
3.16GHz.

To facilitate the labeling process, we implemented a web-
based interface that allows a security analyst to interact with
SnIPS’ output and make a determination on whether it is
interesting or non-interesting. The feedback is recorded in a
back-end database along with the features extracted from the
correlation graph as well as the supporting evidence.

2) Labeling Process: The labeling process was the most
time-consuming part of the research, due to the need of
obtaining sufficient amount of labeled data for both training
and testing. However, we would like to point out that when the
tool is mature enough to be deployed and used in operation,
the labeled data will be generated “naturally” by the users
(security analysts) when they analyze the correlation graphs
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and make determination on whether to escalate investigation.
As the tool is used over time there will be continuously
generated fresh labeled data available to train the prediction
model. Thus although it is tremendous amount of work for the
researchers, who had to be trained as operation analysts and
analyze large amounts of data for research experiments, in a
deployed setting such effort would just be part of the routine
work of the security analysts and there would be virtually no
additional cost for labeling.

The ideal research method would prefer that labeling be
done by a real security analyst. However, it is difficult to recruit
such professionals for research purposes. Research prototypes
are not as easy to use as mature off-the-shelf products and
security analysts are typically overwhelmed by a varietyof
tasks and have little time to help researchers. Thus we, the
researchers, must take on the task of a security analyst to
further examine SnIPS’ output to understand the events and
label them. This is a less-than-ideal situation since usually the
people who label the data need to be different from researchers
to prevent the appearance of conflicts of interest. However,
for this experiment it is hard to recruit people with sufficient
knowledge and skills to perform the labeling, as would be
possible in other problem domains. To prevent bias, we try to
have multiple persons to label the data whenever possible.

As a result of the labeling process we have a dataset that
comprises of 1615 data points. We found that this size is
adequate to conduct our subsequent experiments, as shown
later.

a) Labeling Guidelines: To ensure consistency, we fol-
lowed these guidelines throughout the labeling process. For
each SnIPS’ correlation graph, we did the following to deter-
mine whether it is “interesting” or “non-interesting”.

1) Check the graph structure. This will help understand
and validate the scenario that supports the hypothesis
(sink node), e.g., node 9 in figure 1.

2) Check the type of the machines involved in the
graph - whether they are internal machines (clients or
servers) or external machines. For external machines,
we use the “whois” service and IP reputation websites,
e.g., “Trend Micro site safety center” (http://global.
sitesafety.trendmicro.com), to get a sense on whether
they are benign or potentially malicious.

3) Check the open ports on the machines involved in the
graph. This will help to discover any malicious services
on these machines and to verify some Snort alerts.

4) Check Snort alerts’ payloads. This is helpful to gain
insights into the reason behind each alert, but it only
provides a limited view, as Snort only stores the trig-
gering part of the packet for the alert.

5) Check other features like time stamps, graph size, and
Snort-signature categories in the correlation.

b) Observations on the Labeling Process: Our experi-
ence on manually labeling the data seems to indicate that
the information that matters in determining the existence of
attack or not tends to be highly specific to the nature of
the IDS alerts involved and the contextual information within
the network. For a machine-learning system to make high-
quality classifications, such factors need to be reflected in the

feature selection. However, the challenge is how to encode
such fine-grained diverse information in a uniform format so
that a machine-learning algorithm can consume. Our current
feature selection and construction as explained in section IV-C
is rather coarse-grained. This might become a limiting factor
on the effectiveness of the machine-learning approach, which
was later verified by our experiments. It also seems that some
of the knowledge used in pruning false positives could be
implemented in a systematic way through tuning the alert trig-
gering conditions. This may significantly reduce the number of
false alerts entering the system and may make a higher-level
machine-learning system more effective.

3) Class Distribution: The class distribution (interesting vs.
non-interesting) is skewed in this type of data, with non-
interesting scenarios significantly out-numbering interesting
ones. This is consistent with past estimate on IDS false-positive
alerts, where it has been estimated that up to 99% of alerts
reported by IDSs are not related to security issues [2]. This
will make the classification process harder and prone to low
accuracy [27]. In our dataset, we found the ratio of positive
“interesting” to negative “non-interesting” class to be roughly
1 : 4 1. This unbalanced data presents a challenge for machine
learning, as the resulting classifier could be biased towards the
majority class. To ensure that both classes are learned well, we
experimented balancing the training data (while maintaining
the original distribution in the test data). We have performed
experiments with two balancing approaches to eliminate the
imbalance bias on the classification process (section V).

C. Feature Selection

The most important task in building a machine-learned
classifier is to select the features that are likely to be predictive
to the classes of interest. Based on our empirical experience,
we divide those features into two categories. The first category
consists of information about input to SnIPS. Since currently
SnIPS mostly takes Snort alerts as input evidence, we call this
category Snort-related features. The second category consists
of information about SnIPS’ reasoning which manifests as
structures of the correlation graphs. We call them SnIPS-
related features. The feature set is described below.

1) Snort-related Features:
• Snort-signature set size. In each SnIPS’

graph, there is a set of IDS alerts triggered by a set of
Snort signatures. This feature concerns the size of this
set. For example, in figure 1 sensor1−sensor4 represent
Snort signatures, and the size of the signature set is 4.

• Snort-signature class groups. In SnIPS
each Snort signature is given a weight. This weight
is a measure of the trustworthiness level in the
alerts triggered by that signature. Snort signatures
are categorized into 24 classes. The class weight
is the maximum weight among all the weights
associated with the Snort signatures in that class.

1A curious reader may wonder why this ratio is much higher than Axelsson’s
estimate [2]. This is because we are classifying based on whether a correlation
is worthy of further investigation, as opposed to whether a single event
represents a true attack. The latter would have a much lower ratio.

http://global.sitesafety.trendmicro.com
http://global.sitesafety.trendmicro.com
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This feature is represented as a k-size vector of
pairs, where each pair consists of the number of
appearance of a class and its corresponding weight, as
follows:{{# of appearances of class type1 , weight1 }
, · · · , {# of appearances of class typen , weightn}}. If
the class does not appear in the graph, we use zeros. For
example, the graph in figure 1 has sensor1, sensor2
belong to class1. It also has sensor3 belongs to
class2. Thus, this feature will be {{2, 0.33}, {1, 0.66},
{0, 0.0}, · · · , {0, 0.0}}. This means that the first pair
corresponds to class1, which appears twice and has a
weight of 0.33, and so on.

• Host categories. We grouped the monitored
network IP addresses into three categories: client, server,
and external IPs. This feature is a vector consisting
of the number of appearances of the IPs in each
categories in the Snort alerts supporting the correlation.
This feature is: {{# of appearances of client},
{# of appearances of server},
{# of appearances of external}}. For example, in
figure 1 suppose that ip2 belongs to the server category,
ip3 and ip4 belong to the client category, and ip1
belongs to the external category. Then, if we count
these IPs from the alert1 − alert5 (not shown on the
graph) the feature will be {4, 5, 1}.

2) SnIPS-Related Features:
• Belief value of the correlation graph.

The maximum belief value of the sink nodes in a
correlation graph is the belief value of the whole graph.

• Correlation-graph size. This feature is the
number of nodes in the graph. For example, the cor-
relation graph in figure 1 has 9 nodes. Note that the
sensor nodes (the ones in dotted squares) are not part of
the graph.

• SnIPS’ inference rules set. This feature
is about the participating SnIPS’ inference rules that
created the correlation graph. This feature is represented
as a vector of SnIPS’ inference rules appearing in the
graph. Currently, SnIPS has three internal rules.
Thus, this feature is: {{# of appearances of rule1}
, {# of appearances of rule2} ,
{# of appearances of rule3}}. If a rule does not
appear in the graph, we assign zero for it. For example,
our sample graph in figure 1 has this vector {1, 2, 0} -
rule1 is used to connect nodes (6 to 9), rule2 is used
to connect nodes (7 to 9) and nodes (8 to 9).

D. Learning Approaches

The nature of our problem implies that supervised or semi-
supervised learning approaches are possible candidates. Super-
vised approaches often yield better results if enough labeled
training data are available. Since the labeling process for our
problem domain is time-consuming, it is oftentimes hard to
have a large number of labeled samples. This gives rise to the
possibility of applying semi-supervised learning techniques to
address the problem of scarcity of labeled data. By using semi-
supervised learning, the system can start with a small amount

of labeled data, train a classifier and then make this classifier
labels more data iteratively until the process stabilizes. There
are two well known approaches in semi-supervised learning,
Co-training [4], and Expectation Maximization (EM) [12]
and its variants such as self-training (a.k.a., self-teaching or
bootstrapping) [33]. In section V, we illustrate the results using
both supervised and semi-supervised approaches.

For the various classification methods, Support Vector Ma-
chine (SVM) algorithm [9] has been used widely in the
application of machine learning, including in cybersecurity.
SVM is a binary classifier in its original formulation. In the
linearly separable case, it works by maximizing the separating
boundary between the two classes (a.k.a., margin), and selects
a number of critical boundary instances, called support vectors,
from each class. Then, it builds a linear discriminant function
(a.k.a., a hyperplane) that separates the two classes. When the
data is not linearly separable, the algorithms implicitly maps
the data to a higher dimensional space (through the means of
a kernel), where data becomes linearly separable, and it builds
a linear discriminant function in that space.

V. EXPERIMENTATION AND DISCUSSION

For the experimentation section we used our dataset that
comprises of 1615 data points. We conducted experiments
with supervised and semi-supervised learning using SMO
(Sequential Minimal Optimization) classifier, which is an
implementation of the SVM algorithm from Weka [16]. We
used SMO with logistic models option from Weka to produce
probability estimates for the output. All the experiments were
implemented in Java.

a) Validation Method: We use the n-fold cross-
validation [32] method to evaluate the results of our ex-
periments. In n-fold cross-validation, the original sample is
randomly partitioned into n subsamples: n-1 subsamples are
used for training and the remaining one is used for testing.
The procedure iterates n times to cover each possible splits as
testing exactly once. Empirically, 10 folds have been shown to
give the most reliable results [32], and this is what we used
in our experiments.

b) Performance Metrics: We use accuracy, area under the
ROC curve (ROC AUC), precision, recall, and F-measure to
measure the performance. The measures’ range is from 0 to
1, and the closer the measure to 1, the better it is. We use the
ROC AUC as it has been shown to be a better classification
performance measure when compared to overall accuracy [6].
Precision, recall, and F-measure are used to better understand
the behavior of the classifier for the two classes (interesting
vs. non-interesting). Precision measures the fraction of the
classified instances that are relevant to the right class. Recall
measures the fraction of correctly classified instances out of
the total number of instances in that class. F-measure is the
harmonic mean that combines recall and precision measures;
thus, it shows the trade-off between precision and recall.

A. Supervised Learning
1) SVM Kernels Experiments: We conducted multiple ex-

periments with multiple SMO kernels, to find the best kernel.
Choosing the right kernel function highly depends on the
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nature of the dataset and in practice the best mapping function
is often determined experimentally. This is done by applying
various kernel functions and selecting the best kernel and
parameters that have the highest generalization performance
on a validation dataset. We conducted experiments with nor-
malized polynomial, polynomial, Gaussian Radial Basis Func-
tion (RBF) kernel, and Pearson VII Universal Kernel (PUK).
PUK [29] is a universal kernel that can be calibrated to work
as any of the standard SMO kernels, by appropriately adjusting
its two parameters σ and ω. We used different parameter values
provided in Üstün et al.’s [29] work to get the effect of the
standard kernels. We also used Weka’s default values for the
parameters. The experiments show that using the default values
give the best performance metrics (table I). Thus, we used
these parameters to conduct the remaining experiments.

a) Cost Parameter Value: To avoid over fitting, SMO
has a regularization parameter C that controls the tradeoff
between allowing training errors and enforcing rigid margins
(a.k.a., bias-variance problem). Thus, this parameter can be
seen as a penalty for training errors. Increasing the value
of C increases the cost of misclassifying points and forces
the creation of a classifier that fits the training dataset well,
but may not generalize well on new data. Decreasing the
value of C too much may result in a very simple classifier
that does a poor classification job, in general. There is no
widely accepted standard for selecting the best value for
C. One method recommends trying exponentially growing
sequences, e.g., C ∈ {2−5, 2−3, · · · , 213,215}. Other method
uses C ∈ {0.5,1, 2, 3, 5,7, 10, 15, 20} [25]. We tried both and
found that the best value for our experiments is around 10.

TABLE I. RESULTS FROM RUNNING SMO’S PUK KERNEL ON
UNBALANCED DATASET; WITH σ=1,ω=1,AND C=10

Accuracy Class* ROC AUC Precision Recall F-measure

0.927
1 0.956 0.824 0.797 0.810
0 0.956 0.951 0.958 0.955
Weighted Avg. 0.956 0.926 0.927 0.926

* Class: interesting (positive) is “1” and non-interesting (negative) is “0”.

2) Balancing the Data : As mentioned before, the distri-
bution of classes (interesting vs. non-interesting) is skewed.
This could result in models skewed toward the negative class
(non-interesting), which would affect the prediction ability for
the positive case. As table I shows, the performance metrics
for the interesting class are usually worse than for the non-
interesting class. This is because the classifier does not have
enough data to learn how to predict the interesting class.

There are several approaches to address unbalanced data
in classification. Over-sampling balances the class popula-
tions through over-weighting the minority class instances, for
example in our case we had weight “4” for each instance
in the positive (interesting) class. Under-sampling balances
the class populations through eliminating the majority in-
stances [18].We conducted experiments with over-sampling
and under-sampling using SMO PUK default kernel with pa-
rameter (C = 10). The overall results in the over-sampling are
better than under-sampling; however, there is no indication that
either over-sampling or under-sampling significantly improves
the classifier’s performance. This may be due to a number of

factors such as the overall small number of labeled data, and
the simplicity in over-sampling by duplicating data samples.

B. Semi-Supervised Learning
The idea behind the semi-supervised learning is that the

system can start with very small amount of labeled data and
grow by retraining itself until it consumes all the unlabeled
data. Thus, to validate our hypothesis (section III) we ran
experiments with two of the widely used semi-supervised ap-
proaches. Co-training [4] and a popular variant of Expectation
Maximization (EM) [12].

Table II shows the comparison between the two approaches,
where 10% of the training data is used as labeled and the rest of
the data is used as unlabeled. For comparison, we also show an
upper-bound (the best results that SMO classifier can achieve
with a fully labeled dataset, or in other words a supervised
learning) and a lower-bound (results for running SMO super-
vised classification only with the 10% of labeled data from
our dataset, as used also in co-training).The results show that
co-training seems to be the most promising approach.

The co-training idea is to split the feature set into two sub-
sets (views). Each view should be sufficient to build a classifier
(predictive of the class label), and the two views should be
conditionally independent given the class. The algorithm starts
from a small labeled sample and builds two classifiers from
the two views. Then, it consumes some unlabeled instances
from the unlabeled data pool, and each classifier labels them.
Newly labeled data points are added to the training pool.
Instances where the two classifiers disagree are ignored (thus,
effectively removing possible noise in the labeling process).
Next, the algorithm builds two new classifiers from the bigger
labeled data pool, and iterates until the unlabeled data pool is
consumed or a maximum number of iterations is reached [4].
We use SVM classifiers to learn from the two views in the
co-training approach.

TABLE II. RESULTS FOR SEMI-SUPERVISED WITH SMO’S DEFAULT
PUK KERNEL ON UNBALANCED DATA, WITH σ=1,ω=1,AND C=10;+ EM:

EXPECTATION MAXIMIZATION

Approach Accuracy ROC AUC Precision Recall F-measure

Lower bound 0.875 0.900 0.880 0.875 0.877

Co-training 0.900 0.948 0.907 0.900 0.903

EM+ 0.893 0.895 0.889 0.893 0.890

Upper bound 0.927 0.956 0.926 0.927 0.926

EM-type learning is an iterative statistical technique for
maximum likelihood estimation for small labeled dataset.
Given a model, and data with missing class values, EM will
locally maximize the likelihood of the parameters and predicts
with estimates for the missing class values [12]. The self-
training variant is similar with co-training, but uses only one
view. At each iteration, instances from the unlabeled pool that
are classified with high confidence by the current classifier are
added to the training data pool. As opposed to co-training, the
use of one view makes it impossible to detect labeling conflicts.
Self-training is also used with SVM in our experiments. The
results show that this approach can also produce good results
but not as good as co-training in our application. We think this
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Fig. 2. Effort analysis

is because we have conflicts between some instances (a.k.a.,
noise), which self-training is not able to detect. The two views
used in co-training help in this respect as the two independent
“experts” can point to conflicting instances.

C. The Benefit of Machine Learning Approach
We conducted another experiment to see if the machine

learning approach is an improvement over SnIPS’ prioritization
module or not. To do so, we thresholded the belief value
of the SnIPS’ correlations and calculated the performance
metrics. Table III shows the advantage of the machine learning
approach that uses multiple features including the belief value,
over the approach that relies solely on the belief value in SnIPS
(denoted “Baseline” in the table).

TABLE III. COMPARISON BETWEEN USING JUST THE SNIPS’ BELIEF
VALUE AS A CLASSIFIER (BASELINE) AND MACHINE LEARNING USING

SVM (SUPERVISED) AND CO-TRAINING (SEMI-SUPERVISED) LEARNING;
WITH σ=1,ω=1,AND C=10

Approach Accuracy ROC AUC Precision Recall F-measure

Baseline 0.803 0.679 0.755 0.803 0.753

Semi-supervised 0.900 0.948 0.907 0.900 0.903

Supervised 0.927 0.956 0.926 0.927 0.926

Furthermore, we conducted another analysis using precision,
recall, and dataset sample size to show the benefit of using
machine learning in reducing the workload of the security
analyst. Figure 2 shows the changes when the threshold (x
axis) is increasing. When one starts with small amount of
alerts correlations, the precision is high meaning more of the
effort is devoted to useful tasks. When the work increases, the
cumulative precision decreases as well.

This is a good indication that the classification helps in
presenting the interesting (potentially malicious) correlation to
the security analyst.

VI. RELATED WORK

IDS alert correlation has been extensively studied in the past
ten years [8], [10], [11], [19], [20], [21], [26], [30], [31], [34],
[35], [36]. However, just because a correlation exists does not
automatically mean the associated alerts are high confidence.
The correlation itself are often “false correlations”. From our
conversation with system administrators, it is highly desirable
that alert correlation tools prioritize their output based on
the likelihood of true attacks and other correlation related

attributes. Our work provides a possible approach to address
this need.

Beaver et al. [3], [28] propose an interesting approach by
using “in-situ” learning and semi-supervised learning to build
a model for intrusion detection. Attack traffic is introduced
to the network where the detection tool is deployed and this
labeled data was used for training the classifier. Their model,
as opposed to anomaly detection, learns both the known attacks
and the normal traffic. It remains to be seen how effective the
approach will be when the system is deployed in production
networks. Our application of machine learning has a different
objective. Instead of using machine learning to make a decision
on whether an event is malicious or not, we use it to prioritize
alert-correlation graphs from an up-stream analysis tool, with
the goal of saving analysts’ time. We also conducted our
experiment in a live production network.

Pietraszek [23] has used machine learning to classify IDS
alerts into true and false positives. In a later work, Pietraszek
and Tanner [24] propose a more complete system, where noisy
alerts are eliminated before feeding them into the system. This
line of work differs from ours in two ways. First it operates
at the IDS alerts level, and it uses RIPPER rule learner. The
rule learner approach has an explicit classification logic, which
allows a human expert to inspect the classifier and verify
its correctness. Instead of a rule learner, we use the SVM
algorithm to classify interesting and non-interesting correlation
graphs. In our framework, the classifier will adapt according
to the new incoming labels and will present the non intuitive
conflicting results to the expert for further study. The RIPPER
rule learner is applied before the correlation stage, while our
approach uses correlation graph related features to build the
classifier. Second, in our work the noisy alerts are not removed.
This is desirable since even the most noisy alerts can have
some link to a true attack.

Bolzoni et al. [5] present a system that automatically classi-
fies attacks (e.g., buffer overflow, SQL Injection) detected by
an anomaly-based network intrusion detection system. This
is done by comparing the extracted byte sequences from an
alert payload to previously collected data, e.g., Snort alert
classification. Our work’s goal is to classify intrusion analysis
correlation graphs into “interesting” and “non-interesting”,
where “interesting” means that a human analyst would want
to conduct further analysis on the events.

There has been a long line of work on applying machine
learning in anomaly-based intrusion detection [7], [13]. It has
been pointed out that significant challenges exist in applying
machine learning in this area [27]. Our application of machine
learning has a different goal than those past works. Our
machine-learned model will help a human analyst to prioritize
output from an intrusion analysis system, which relies upon
(multiple) IDS systems. Our method is not to build an intrusion
detector through machine learning. Our application of machine
learning is justified due to the nature of the problem.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented our results from experimenting
with machine learning techniques in intrusion analysis. Our
goal is to use machine learning to reduce the workload on the
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security analyst by automating the pruning of non-interesting
alert correlations. We conducted experiments with both su-
pervised and semi-supervised learning approaches using SVM
classifiers. Our results indicate that the manual process of
determining whether a correlation graph is worthy of further
investigation can be automated with acceptable performance
through co-training using SVM classifiers. The main lesson
learned from this work is that proper labeling is an important
step in this research and the insights in labeling helped in
feature selection and construction. It is also clear from the
work that encoding all relevant features to build a classifier is
a challenging task and one must make trade-offs in deciding
how fine-grained the features are.

We left the full integration of this system with SnIPS as
future work. This will help to further test our hypothesis by
collecting more labeled data. To further help the labeling task,
we have started the process of setting up a time machine[17]
and integrate it with SnIPS’ web interface. This will help the
security analyst to have full view of the attack scenario.
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